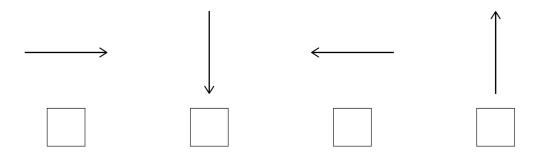

| 0 | 4 | Figure 6 shows a wire in a magnetic field. |
|---|---|--------------------------------------------|
|   |   |                                            |

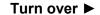
The direction of the current in the wire is shown.


Figure 6



In which direction is the force on the wire?

[1 mark]

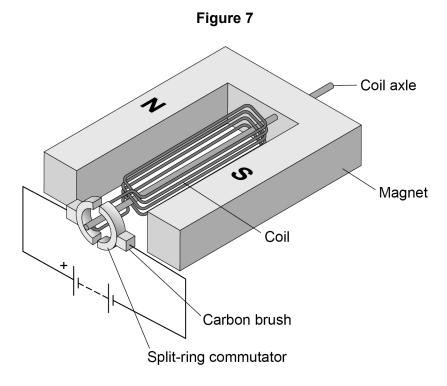

Tick (✓) one box.



| 0 | 4 | <br>2 | Give <b>two</b> ways that the direction of the force on the wire could be reversed. |     |
|---|---|-------|-------------------------------------------------------------------------------------|-----|
|   |   |       | ·                                                                                   | · - |

[2 marks]

Question 4 continues on the next page






| 0 4.3 | The length of the wire in the magnetic field is 0.050 m |
|-------|---------------------------------------------------------|
|       | The force on the wire is 0.072 N                        |
|       | magnetic flux density = 360 mT                          |
|       | Calculate the current in the wire.                      |
|       | Use the Physics Equations Sheet.                        |
|       | [4 marks]                                               |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       | Current =A                                              |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |
|       |                                                         |

Do not write outside the

0 4 Figure 7 shows a simple motor.



| [4 marks | ere is a current in the coil. | Explain why the coil rotates when |
|----------|-------------------------------|-----------------------------------|
|          |                               |                                   |
|          |                               |                                   |
|          |                               |                                   |
|          |                               |                                   |
|          |                               |                                   |
|          |                               |                                   |
|          |                               |                                   |

Turn over for the next question

11



| Question | Answers                                                                                                          | Extra information                                                                                                                                                                                                                                                             | Mark        | AO /<br>Spec. Ref. | ID |
|----------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------|----|
| 04.1     |                                                                                                                  |                                                                                                                                                                                                                                                                               | 1           | AO1<br>6.7.2.2     | A  |
| 04.2     | reverse the direction of the current reverse the direction of the magnetic field                                 |                                                                                                                                                                                                                                                                               | 1           | AO1<br>6.7.2.2     | E  |
| 04.3     | B = 0.360 (T)<br>$0.072 = 0.360 \times I \times 0.050$<br>$I = \frac{0.072}{(0.360 \times 0.050)}$ $I = 4.0 (A)$ | an answer of 4.0 (A) scores 4 marks  allow a correct substitution using an incorrectly / not converted value of B  allow a correct rearrangement using an incorrectly / not converted value of B  allow a correct calculation using an incorrectly / not converted value of B | 1<br>1<br>1 | AO2<br>6.7.2.2     | E  |

| 04.4  | there is a magnetic field (due to<br>the permanent magnet) <b>and</b><br>current in a wire causes a<br>magnetic field |                                                                                                                    | 1  | AO1<br>6.7.2.3 | E |
|-------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----|----------------|---|
|       | current is in opposite directions in each side of the coil                                                            |                                                                                                                    | 1  |                |   |
|       | so forces act in opposite directions on either side of the coil                                                       |                                                                                                                    | 1  |                |   |
|       | (the split ring ensures that) the current in the left / right side of the coil is always in the same direction        | allow (the split ring ensures that) the force in the left / right side of the coil is always in the same direction | 1  |                |   |
|       |                                                                                                                       | allow the current reverses each half rotation                                                                      |    |                |   |
| Total |                                                                                                                       |                                                                                                                    | 11 |                |   |